ACE-Cost: Acquisition Cost Efficient Classifier by Hybrid Decision Tree with Local SVM Leaves

نویسندگان

  • Liyun Li
  • Umut Topkara
  • Nasir D. Memon
چکیده

The standard prediction process of SVM requires acquisition of all the feature values for every instance. In practice, however, a cost is associated with the mere act of acquisition of a feature, e.g. CPU time needed to compute the feature out of raw data, the dollar amount spent for gleaning more information, or the patient wellness sacrificed by an invasive medical test, etc. In such applications, a budget constrains the classification process from using all of the features. We present, AceCost, a novel classification method that reduces the expected test cost of SVM without compromising from the classification accuracy. Our algorithm uses a cost efficient decision tree to partition the feature space for obtaining coarse decision boundaries, and local SVM classifiers at the leaves of the tree to refine them. The resulting classifiers are also effective in scenarios where several features share overlapping acquisition procedures, hence the cost of acquiring them as a group is less than the sum of the individual acquisition costs. Our experiments on the standard UCI datasets, a network flow detection application, as well as on synthetic datasets show that, the proposed approach achieves classification accuracy of SVM while reducing the test cost by 40%-80%.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Anomaly Detection Using SVM as Classifier and Decision Tree for Optimizing Feature Vectors

Abstract- With the advancement and development of computer network technologies, the way for intruders has become smoother; therefore, to detect threats and attacks, the importance of intrusion detection systems (IDS) as one of the key elements of security is increasing. One of the challenges of intrusion detection systems is managing of the large amount of network traffic features. Removing un...

متن کامل

Hybrid Decision Tree Architecture Utilizing Local SVMs for Efficient Multi-Label Learning

Multi-label learning (MLL) problems abound in many areas, including text categorization, protein function classification, and semantic annotation of multimedia. An issues that severely limits the applicability of many current machine learning approaches to MLL are the large-scale problem, which have a strong impact on the computational complexity of learning. These problems are especially prono...

متن کامل

Hybrid Decision Tree Architecture Utilizing Local SVMs for Multi-Label Classification

Multi-label classification (MLC) problems abound in many areas, including text categorization, protein function classification, and semantic annotation of multimedia. Issues that severely limit the applicability of many current machine learning approaches to MLC are the large-scale problem and the high dimensionality of the label space, which have a strong impact on the computational complexity...

متن کامل

An Active Learning Classifier for Further Reducing Diabetic Retinopathy Screening System Cost

Diabetic retinopathy (DR) screening system raises a financial problem. For further reducing DR screening cost, an active learning classifier is proposed in this paper. Our approach identifies retinal images based on features extracted by anatomical part recognition and lesion detection algorithms. Kernel extreme learning machine (KELM) is a rapid classifier for solving classification problems i...

متن کامل

CoCoST: A Computational Cost Sensitive Classifier

Computational cost of classification is as important as accuracy in on-line classification systems. The computational cost is usually dominated by the cost of computing implicit features of the raw input data. Very few efforts have been made to design classifiers which perform effectively with limited computational power; instead, feature selection is usually employed as a pre-processing step t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011